Tannin–Titanium Oxide Multilayer as a Photochemically Suppressed Ultraviolet Filter

2018 
UV filters can initiate redox reactions of oxygen and water when exposed to sunlight, generating reactive oxygen species (ROS) that deteriorate the products containing them and cause biological damages. This photochemical reactivity originates from the high chemical potential of UV filters, which also determines the optical properties desirable for sunscreen applications. We hypothesize that this dilemma can be alleviated if the photochemical pathway of UV filters is altered to coupling with redox active molecules. Here, we employ tannic acid (TA) as a key molecule for controlling the photochemical properties of titanium dioxide nanoparticles (TiO2 NPs). TA provides an unusual way for layer-by-layer assembly of TiO2 NPs by the formation of a ligand-to-metal charge transfer complex that alters the nature of UV absorption of TiO2 NPs. The galloyl moieties of TA efficiently scavenge ROS due to the stabilization of ROS by intramolecular hydrogen bonding while facilitating UV screening through direct charge in...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    18
    Citations
    NaN
    KQI
    []