Large-scale integration of near-indistinguishable artificial atoms in hybrid photonic circuits

2019 
A central challenge in developing quantum computers and long-range quantum networks lies in the distribution of entanglement across many individually controllable qubits. Colour centres in diamond have emerged as leading solid-state 'artificial atom' qubits, enabling on-demand remote entanglement, coherent control of over 10 ancillae qubits with minute-long coherence times, and memory-enhanced quantum communication. A critical next step is to integrate large numbers of artificial atoms with photonic architectures to enable large-scale quantum information processing systems. To date, these efforts have been stymied by qubit inhomogeneities, low device yield, and complex device requirements. Here, we introduce a process for the high-yield heterogeneous integration of 'quantum micro-chiplets' (QMCs) -- diamond waveguide arrays containing highly coherent colour centres -- with an aluminium nitride (AlN) photonic integrated circuit (PIC). Our process enables the development of a 72-channel defect-free array of germanium-vacancy (GeV) and silicon-vacancy (SiV) colour centres in a PIC. Photoluminescence spectroscopy reveals long-term stable and narrow average optical linewidths of 54 MHz (146 MHz) for GeV (SiV) emitters, close to the lifetime-limited linewidth of 32 MHz (93 MHz). Additionally, inhomogeneities in the individual qubits can be compensated in situ with integrated tuning of the optical frequencies over 100 GHz. The ability to assemble large numbers of nearly indistinguishable artificial atoms into phase-stable PICs provides an architecture toward multiplexed quantum repeaters and general-purpose quantum computers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    102
    Citations
    NaN
    KQI
    []