A cost-effective system for automated early antimicrobial susceptibility testing using deep learning

2021 
We demonstrate an automated, cost-effective system that delivers early antimicrobial-susceptibility-testing results, minimizing incubation time and eliminating human errors, while remaining compatible with standard clinical workflow. A neural network processes the time-lapse intensity information from a fiber-optic array to detect growth in each well of a 96-wellplate. Our blind testing on clinical Staphylococcus aureus infections reveals that 95.03% of all the wells containing growth were correctly identified, with an average incubation time of 5.72-h. This deep learning-based optical system met the FDA-defined essential and categorical agreement criteria for all 14 antibiotics tested, after an average of <7-h of incubation time.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []