Gene co-expression network analysis for identifying genetic markers in Parkinson's disease - a three-way comparative approach

2018 
Abstract Parkinson's disease (PD) is a neurodegenerative disorder involving progressive deterioration of dopaminergic neurons. Although few genetic markers for familial PD are known, the etiology of sporadic PD remains poorly understood. Microarray data was analysed for induced pluripotent stem cells (iPSCs) derived from PD patients and mature neuronal cells (mDA) differentiated from these iPSCs. Combining expression and semantic similarity, a highly-correlated PD interactome was constructed that included interactions of established Parkinson's disease marker genes. A novel three-way comparative approach was employed, delineating topologically and functionally important genes. These genes showed involvement in pathways like Parkin-ubiquitin proteosomal system (UPS), immune associated biological processes and apoptosis. Of interest are three genes, eEF1A1, CASK, and PSMD6 that are linked to PARK2 activity in the cell and thereby form attractive candidate genes for understanding PD. Network biology approach delineated in this study can be applied to other neurodegenerative disorders for identification of important genetic regulators.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    21
    Citations
    NaN
    KQI
    []