Simultaneous measurement of temperature and refractive index using an exposed core microstructured optical fiber

2019 
We have demonstrated a novel scheme for simultaneous measurement of temperature and refractive index by using an exposed core microstructured optical fiber (ECF). The ECF allows for high sensitivity to refractive index due to the small exposed-core, while being supported by a standard fiber diameter cladding making it robust compared to optical micro-fibers. The sensor combines a fiber Bragg grating (FBG) inscribed into the core of the ECF and a multimode Mach-Zehnder interferometer (MZI). Both the FBG and MZI are sensitive to refractive index (RI) and temperature through a combination of direct access to the evanescent field via the exposed-core, the thermo-optic effect and thermal expansion. The FBG and MZI respond differently to changes in temperature and RI, thus allowing for the simultaneous measurement of these parameters. In our experiment RI sensitivities of 5.85 nm/RIU and 794 nm/RIU, and temperature sensitivities of 8.72 pm/°C and -57.9 pm/°C, were obtained for the FBG and MZI respectively. We demonstrate that a transfer matrix approach can be used to simultaneously measure both parameters, solving the problem of temperature sensitivity of RI sensors due to the high thermo-optic coefficient of aqueous samples.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    24
    Citations
    NaN
    KQI
    []