The Fluxional Nature of the Hydrated Electron: Energy and Entropy Contributions to Aqueous Electron Free Energies

2020 
There has been a great deal of recent controversy over the structure of the hydrated electron and whether it occupies a cavity or contains a significant number of interior waters (noncavity). The questions we address in this work are, from a free energy perspective, how different are these proposed structures? Do the different structures all lie along a single continuum, or are there significant differences (i.e., free energy barriers) between them? To address these questions, we have performed a series of one-electron calculations using umbrella sampling with quantum biased molecular dynamics along a coordinate that directly reflects the number of water molecules in the hydrated electron’s interior. We verify that a standard cavity model of the hydrated electron behaves essentially as a hard sphere: the model is dominated by repulsion at short range such that water is expelled from a local volume around the electron, leading to a water solvation shell like that of a pseudohalide ion. The repulsion is muc...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    3
    Citations
    NaN
    KQI
    []