Vertical-junction Photodiodes for Smaller Pixels in Retinal Prostheses

2020 
Objective: To restore central vision in patients with atrophic age-related macular degeneration, we replace the lost photoreceptors with photovoltaic pixels, which convert light into current and stimulate the secondary retinal neurons. Clinical trials demonstrated prosthetic acuity closely matching the sampling limit of the 100 μm pixels, and hence smaller pixels are required for improving visual acuity. However, with smaller flat bipolar pixels, the electric field penetration depth and the photodiode responsivity significantly decrease, making the device inefficient. Smaller pixels may be enabled (1) by increasing the diode responsivity using vertical p-n junctions and (2) by directing the electric field vertically using 3-D electrodes. Here, we demonstrate such novel photodiodes and test the retinal stimulation in a vertical electric field. Approach: Arrays of silicon photodiodes of 55, 40, 30, and 20 μm in width, with vertical p-n junctions, were fabricated. The electric field in the retina was directed vertically by a common return electrode at the edge of the devices. Optical and electronic performance of the diodes was characterized in-vitro, and retinal stimulation threshold measured by recording the visually evoked potentials (VEPs) in rats with retinal degeneration. Main results: The photodiodes exhibited sufficiently low dark current (
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    0
    Citations
    NaN
    KQI
    []