Amphiphile-Induced Phase Transition of Liquid Crystals at Aqueous Interfaces

2018 
Monolayer assemblies of amphiphiles at planar interfaces between thermotropic liquid crystals (LCs) and an aqueous phase can give rise to configurational transitions of the underlying LCs. A common assumption has been that a reconfiguration of the LC phase is caused by an interdigitation of the hydrophobic tails of amphiphiles with the molecules of the LC at the interface. A different mechanism is discovered here, whereby reorientation of the LC systems is shown to occur through lowering of the orientation-dependent surface energy of the LC due to formation of a thin isotropic layer at the aqueous interface. Using a combination of atomistic molecular dynamics simulations and experiments, we demonstrate that a monolayer of specific amphiphiles at an aqueous interface can cause a local nematic-to-isotropic phase transition of the LC by disturbing the antiparallel configuration of the LC molecules. These results provide new insights into the interfacial, molecular-level organization of LCs that can be exploi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    10
    Citations
    NaN
    KQI
    []