Evaluating the photocatalytic activity of Pt/TNT film catalyst

2016 
Abstract TiO 2 nanotubes (TNT) were prepared by a hydrothermal method from the commercially available TiO 2 -P25. Five types of TNT were produced at different temperatures (120 °C, 130 °C, and 150 °C) and by using different reaction times (12 h, 24 h, and 30 h). The photocatalytic reactor that was used is a film catalytic reactor, in which the height of the catalyst is 1.0 mm. The BET and FESEM analysis results showed that TNT130-24 (130 °C, 24 h) and TNT150-12 (150 °C, 12 h) possessed well-formed tubular structures with a high specific surface area (282.9–316.7 m 2  g −1 ) and large pore volumes (0.62–0.70 cm 3  g −1 ). However, TNT120-30 (120 °C, 30 h) presented the best photocatalytic activity upon CO removal due to the synergistic effect of TiO 2 nanotubes and TiO 2 particles. After the TNT catalysts were modified with Pt particles, the removal efficiency was in the order of Pt/TNT120-30>Pt/TNT130-24>Pt/P25. Pt/TNT120-30 showed 99% removal efficiency in a continuous photoreactor with a high space velocity of 1.79×10 4  h −1 . The results of the TEM and DRS analyses confirmed that the Pt particles enhanced the photocatalytic reaction, which was attributed to the well-dispersed nature of the 1 nm nanoscaled Pt particles on the surfaces of the TNT catalysts, and narrowed the band gap from 3.22 eV to 3.01 eV.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    4
    Citations
    NaN
    KQI
    []