Pressure-induced melting of magnetic order and emergence of a new quantum state in α−RuCl3

2018 
Here we report the observation of pressure-induced melting of antiferromagnetic (AFM) order and emergence of a new quantum state in the honeycomb-lattice halide alpha-RuCl3, a candidate compound in the proximity of quantum spin liquid state. Our high-pressure heat capacity measurements demonstrate that the AFM order smoothly melts away at a critical pressure (Pc) of 0.7 GPa. Intriguingly, the AFM transition temperature displays an increase upon applying pressure below the Pc, in stark contrast to usual phase diagrams, for example in pressurized parent compounds of unconventional superconductors. Furthermore, in the high-pressure phase an unusual steady of magnetoresistance is observed. These observations suggest that the high-pressure phase is in an exotic gapped quantum state which is robust against pressure up to ~140 GPa.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    37
    Citations
    NaN
    KQI
    []