Electrical Characterization of ENEA High Temperature Superconducting Cable

2015 
ENEA is currently involved in the design and manufacture of a fully high temperature superconductor (HTS) cable in the cable-in-conduit conductor (CICC) configuration exploiting commercial second generation ReBaCuO (Re: Rare Earth and Y) coated-conductors. The final cable will be composed of five slots obtained in a helically twisted aluminum central core and filled with 2G tape stacks. This conductor is designed to operate above 10 kA in 12 T background field at 4.2 K or at about 10 kA in self-field at 77 K. A first sample of about 1-m length with one fully superconductive slot has been manufactured using 15 tapes provided by Superpower, Inc. and 12 tapes from the SuNAM Company grouped in two sub-stacks divided by a Kapton foil. Each tape of the stack has been characterized individually by measuring critical current values I c at 77 K (liquid N 2 bath) in self-field and n-index. Results revealed that the tapes showed no degradation of critical current values when compared with suppliers specifications confirming that the proposed manufacturing process is fully compatible with commercial coated-conductors. Inter-tape resistance(R inter ) has also been measured and the observed dependence of R inter on the tape position in the stack has been put in correlation with transverse stress distribution calculated by finite element models. A second sample with a full superconducting slot has been manufactured using 18 SuNAM tapes. Preliminary results on the stack transport measurements performed at 77 K in self-field will be presented and discussed. All the samples were manufactured by using already existing industrial equipments at Tratos Cavi SpA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    28
    Citations
    NaN
    KQI
    []