Object Tracking based on Quantum Particle Swarm Optimization

2017 
In Computer Vision domain, moving Object Tracking considered as one of the toughest problem.As there so many factors associated like illumination of light, noise, occlusion, sudden start and stop of moving object, shading which makes tracking even harder problem not only for dynamic background but also for static background.In this paper we present a new object tracking algorithm based on Dominant points on tracked object using Quantum particle swarm optimization (QPSO) which is a new different version of PSO based on Quantum theory. The novelty in our approach is that it can be successfully applicable in variable background as well as static background and application of quantum PSO makes the algorithm runs lot faster where other basic PSO algorithm failed to do so due to heavy computation.In our approach firstly dominants points of tracked objects detected, then a group of particles form a swarm are initialized randomly over the image search space and then start searching the curvature connected between two consecutive dominant points until they satisfy fitness criteria. Obviously it is a Multi-Swarm approach as there are multiple dominant points, as they moves, the curvature moves and the curvature movement is tracked by the swarm throughout the video and eventually when the swarm reaches optimal solution , a bounding box drawn based on particles final position.Experimental results demonstrate this proposed QPSO based method work efficiently and effectively in visual object tracking in both dynamic and static environments and run time shows that it runs closely 90% faster than basic PSO.in our approach we also apply parallelism using MatLab Parfor command to show how very less number of iteration and swarm size will enable us to successfully track object.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []