Enhancing the Osteogenic Capability of Core–Shell Bilayered Bioceramic Microspheres with Adjustable Biodegradation

2017 
This study describes the fabrication and biological evaluation of core–shell bilayered bioceramic microspheres with adjustable compositional distribution via a coaxial bilayer capillary system. Beyond the homogeneous hybrid composites, varying the diameter of capillary nozzles and the composition of the bioceramic slurries makes it easy to create bilayered β-tricalcium phosphate (CaP)/β-calcium silicate (CaSi) microspheres with controllable compositional distribution in the core or shell layer. Primary investigations in vitro revealed that biodegradation could be adjusted by compositional distribution or shell thickness and that poorly soluble CaP located on the shell layer of CaP or CaSi@CaP microspheres was particularly beneficial for mesenchymal stem cell adhesion and growth in the early stage, but the ion release from the CaP@CaSi exhibited a potent stimulating effect on alkaline phosphatase expression of the cells at longer times. When the bilayered microspheres (CaSi@CaP, CaP@CaSi) and the monolayer...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    17
    Citations
    NaN
    KQI
    []