Protein-Poly(amino acid) Nanocore-Shell Mediated Synthesis of Branched Gold Nanostructures for Computed Tomographic Imaging and Photothermal Therapy of Cancer.

2016 
Anisotropic noble metal nanoparticles especially branched gold nanoparticles with a large absorption cross-section and high molar extinction coefficient have promising applications in biomedical field. However, sophisticated and cumbersome methodologies of synthesis along with toxic precursors pose serious concern for its use. Herein, we report the synthesis of branched gold nanostructures from protein (albumin) nanoparticles by a simple reduction method. Albumin nanoparticles were synthesized by a modified desolvation technique with poly-l-arginine (cationic poly amino acid) substituting the conventional toxic cross-linker, glutaraldehyde. In silico molecular docking was carried out to study the interaction of poly-l-arginine with albumin which revealed its binding to Pocket 1B of the A-chain of albumin. The poly-l-arginine-albumin core–shell nanoparticles of ∼100 nm in size served as a base for attachment of gold ions and its reduction to form 140 nm sized branched gold nanostructures conjugated with gl...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    38
    Citations
    NaN
    KQI
    []