Vanadium Abundance Derivations in 255 Metal-poor Stars

2020 
We present vanadium (V) abundances for 255 metal-poor stars, derived from high-resolution optical spectra from the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at Las Campanas Observatory, the Robert G. Tull Coude Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory, and the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We use updated V I and V II atomic transition data from recent laboratory studies, and we increase the number of lines examined (from 1 to 4 lines of V I, and from 2 to 7 lines of V II). As a result, we reduce the V abundance uncertainties for most stars by more than 20% and expand the number of stars with V detections from 204 to 255. In the metallicity range $-$4.0 $<$ [Fe/H] $< -$1.0, we calculate the mean ratios [V I/Fe I]$ = -0.10 \pm 0.01 (\sigma = 0.16)$ from 128 stars with $\geq$ 2 V I lines detected, [V II/Fe II] $= +0.13 \pm 0.01 (\sigma = 0.16)$ from 220 stars with $\geq$ 2 V II lines detected, and [V II/V I] $= +0.25 \pm 0.01 (\sigma = 0.15)$ from 119 stars. We suspect this offset is due to non-LTE effects, and we recommend using [V II/Fe II], which is enhanced relative to the solar ratio, as a better representation of [V/Fe]. We provide more extensive evidence for abundance correlations detected previously among scandium, titanium, and vanadium, and we identify no systematic effects in the analysis that can explain these correlations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    6
    Citations
    NaN
    KQI
    []