A shallow neural model for relation prediction
2021
Knowledge graph completion refers to predicting missing triples. Most approaches achieve this goal by predicting entities, given an entity and a relation. We predict missing triples via the relation prediction. To this end, we frame the relation prediction problem as a multi-label classification problem and propose a shallow neural model (SHALLOM) that accurately infers missing relations from entities. Shallom is analogous to C-BOW as both approaches predict a central token (p) given surrounding tokens ((s, o)). Our experiments indicate that Shallom outperforms state-of-the-art approaches on the FB15K-237 and WN18RR with margins of up to 3% and 8% (absolute), respectively, while requiring a maximum training time of 8 minutes on these datasets. We ensure the reproducibility of our results by providing an open-source implementation including training and evaluation scripts at https://github.com/dice-group/Shallom.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
25
References
3
Citations
NaN
KQI