Optimizing Kernel PCA Using Sparse Representation-Based Classifier for MSTAR SAR Image Target Recognition

2013 
Different kernels cause various class discriminations owing to their different geometrical structures of the data in the feature space. In this paper, a method of kernel optimization by maximizing a measure of class separability in the empirical feature space with sparse representation-based classifier (SRC) is proposed to solve the problem of automatically choosing kernel functions and their parameters in kernel learning. The proposed method first adopts a so-called data-dependent kernel to generate an efficient kernel optimization algorithm. Then, a constrained optimization function using general gradient descent method is created to find combination coefficients varied with the input data. After that, optimized kernel PCA (KOPCA) is obtained via combination coefficients to extract features. Finally, the sparse representation-based classifier is used to perform pattern classification task. Experimental results on MSTAR SAR images show the effectiveness of the proposed method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    11
    Citations
    NaN
    KQI
    []