Electroweak sector under scrutiny: A combined analysis of LHC and electroweak precision data

2019 
We perform a comprehensive study of the Higgs couplings, gauge-boson couplings to fermions and triple gauge boson vertices. We work in the framework of effective theories including the effects of the dimension-six operators contributing to these observables. We determine the presently allowed range for the coefficients of these operators via a 20 parameter global fit to the electroweak precision data, as well as electroweak diboson and Higgs production data from LHC Run 1 and 2. We quantify the improvement on the determination of the 20 Wilson coefficients by the inclusion of the Run 2 results. In particular we present a novel analysis of the ATLAS Run 2 36.1 $\rm fb^{-1}$ data on the transverse mass distribution of $W^+W^-$ and $W^\pm Z$ in the leptonic channel which allow for stronger tests of the triple gauge boson vertices. We discuss the discrete (quasi)-degeneracies existing in the parameter space of operator coefficients relevant for the Higgs couplings to fermions and gauge bosons. In particular we show how the inclusion of the incipient $tH$ data can break those degeneracies in the determination of the top-Higgs coupling. We also discuss and quantify the effect of keeping the terms quadratic in the Wilson coefficients in the analysis and we show the importance of the Higgs data to constrain some of the operators that modify the triple gauge boson couplings in the linear regime.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    86
    Citations
    NaN
    KQI
    []