Mitochondria‐targeted esculetin inhibits PAI‐1 levels by modulating STAT3 activation and miR‐19b via SIRT3: Role in acute coronary artery syndrome

2018 
In this study we explored the microRNAs responsible for the regulation of PAI-1 during LPS-stimulated inflammation in human aortic endothelial cells and subsequently studied the effect of a newly synthesized mitochondria-targeted esculetin (Mito-Esc) that was shown for its anti-atherosclerotic potential, in modulating PAI-1 levels and its targeted miRs during angiotensin-II-induced atherosclerosis in ApoE-/- mice. LPS-stimulated PAI-1 was accompanied with an upregulation of miR-19b and down-regulation of miR-30c. These effects of LPS on PAI-1 were reversed in the presence of both parent esculetin and Mito-Esc. However, the effect of Mito-Esc was more pronounced in the regulation of PAI-1. In addition, LPS-stimulated PAI-1 expression was significantly decreased in cells treated with Anti-miR-19b, thereby suggesting that miR-19b co-expression plays a key role in PAI-1 regulation. The results also show that incubation of cells with Stattic, an inhibitor of STAT-3, inhibited LPS-stimulated PAI-1 expression. Interestingly, knockdown of SIRT3, a mitochondrial biogenetic marker, enhanced PAI-1 levels via modulation of miR-19b and -30c. Mito-Esc treatment significantly inhibited Ang-II-induced PAI-1, possibly via altering miR-19b and 30c in ApoE-/- mice. The association between PAI-1, miR-19b and -30c were further confirmed in plasma and microparticles isolated from patients suffering from acute coronary syndrome of various degrees. Taken together, LPS-induced PAI-1 involves co-expression of miR-19b and down regulation of miR-30c, and Mito-Esc treatment by modulating miR-19b and miR-30c through SIRT3 activation, inhibits PAI-1 levels that, in part, contribute to its anti-atherosclerotic effects. Moreover, there exists a strong positive correlation between miR-19b and PAI-1 in patients suffering from ST-elevated myocardial infarction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    15
    Citations
    NaN
    KQI
    []