Discovery of a subtype-selective, covalent inhibitor against palmitoylation pocket of TEAD3

2021 
Abstract The TEA domain (TEAD) family of transcription factors (TEAD1‒4) are essential transcription factors that control cell differentiation and organ size in the Hippo pathway. Although the sequences and structures of TEAD family proteins are highly conserved, each TEAD isoform has unique physiological and pathological functions. Therefore, the development and discovery of subtype selective inhibitors for TEAD protein will provide important chemical probes for the functions of different transcription factors in development and diseases. Here, we identified a novel TEAD1/3 covalent inhibitor (DC-TEADin1072) with IC50 values of 0.61 ± 0.02 and 0.58 ± 0.12 μmol/L against TEAD1 and TEAD3, respectively. Further structure-directed chemical optimization yielded a selective TEAD3 inhibitor DC-TEAD3in03 with the IC50 value of 0.16 ± 0.03 μmol/L, which shows 100-fold selectivity over other TEAD isoforms in activity-based protein profiling (ABPP) assays. In cells, DC-TEAD3in03 showed selective inhibitory effect on TEAD3 in GAL4-TEAD (1‒4) reporter assays with the IC50 value of 1.15 μmol/L. When administered to zebrafish juveniles, experiments showed that DC-TEAD3in03 reduced the growth rate of zebrafish caudal fins, indicating the importance of TEAD3 activity in controlling proportional growth of vertebrate appendages.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    1
    Citations
    NaN
    KQI
    []