Polyvinylpyrrolidone-Stabilized Iridium Nanoparticles Catalyzed the Transfer Hydrogenation of Nitrobenzene Using Formic Acid as the Source of Hydrogen
2020
Catalytic nitrobenzene reduction is crucial for the synthesis of 4,4-methylene diphenyl diisocyanate, which is used to produce polyurethane foams, thermoplastic elastomers, and adhesives. The stability and activity of nanoparticle catalysts are affected by surface ligands and stabilizers. We established the complete composition of 7.0 ± 1.1 nm iridium oxide nanoparticles that were stabilized by polyvinylpyrrolidone (PVP[Ir]). PVP[Ir] and its surface stabilizers were characterized using elemental analysis (EA), high-resolution X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD), FT-IR, and UV-vis spectroscopy. Notably, PVP[Ir] contained 33.8 ± 0.4% Ir. XPS binding energy analyses suggest that 7% of the Ir is Ir(0) and 93% is IrO2. Using formic acid as the source of hydrogen, PVP[Ir] catalyzed the selective hydrogenation of nitrobenzene to give aniline as the only product in 66% yield in 1 h at 160 °C in a high-pressure metal reactor. Less than 1% of the side products (azobenzene and azoxybenzene) were detected. In contrast, using alcohol as the hydrogen source led to a low yield and a poor selectivity for aniline.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
58
References
0
Citations
NaN
KQI