Magnetic properties of the S=1/2 square lattice antiferromagnet CuF2(H2O)2(pyz)

2012 
We have performed elastic and inelastic neutron scattering experiments on single crystal samples of the coordination polymer compound CuF{sub 2}(H{sub 2}O){sub 2}(pyz) (pyz = pyrazine) to study the magnetic structure and excitations. The elastic neutron diffraction measurements indicate a collinear antiferromagnetic structure with moments oriented along the [0.7 0 1] real-space direction and an ordered moment of 0.60 {+-} 0.03 {micro}B/Cu. This value is significantly smaller than the single-ion magnetic moment, reflecting the presence of strong quantum fluctuations. The spin wave dispersion from magnetic zone center to the zone boundary points (0.5 1.5 0) and (0.5 0 1.5) can be described by a two-dimensional Heisenberg model with a nearest-neighbor magnetic exchange constant J{sub 2D} = 0.934 {+-} 0.0025 meV. The interlayer interaction J{sub perp} in this compound is less than 1.5% of J{sub 2D}. The spin excitation energy at the (0.5 0.5 0.5) zone boundary point is reduced when compared to the (0.5 1 0.5) zone boundary point by {approx}10.3% {+-} 1.4%. This zone boundary dispersion is consistent with quantum Monte Carlo and series expansion calculations for the S=1/2 Heisenberg square lattice antiferromagnet, which include corrections for quantum fluctuations to linear spin wave theory.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []