Effect of magnetic field on Blasius and Sakiadis flow of nanofluids past an inclined plate

2017 
Abstract A theoretical study on the effect of magnetic field on the classical Blasius and Sakiadis flow of nanofluids over an inclined plate is presented in this paper. The governing partial differential equations are converted into ordinary differential equations using suitable similarity transformations. The transformed boundary layer equations are solved numerically using MATLAB (bvp4c). Two types of nanoparticles are chosen namely copper and alumina in the base fluid of water with the Prandtl number ( Pr  = 6.2). The effects of the governing physical parameters over the velocity, temperature, skin friction coefficient and reduced Nusselt number for both the Blasius and Sakiadis flows are displayed graphically. The characteristics of physical and engineering interest are discussed in detail.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    11
    Citations
    NaN
    KQI
    []