Three-Dimensional Subharmonic Aided Pressure Estimation for Assessing Arterial Plaques in a Rabbit Model: Subharmonic Aided Pressure Estimation for Assessing Arterial Plaques

2018 
OBJECTIVES: To investigate 3-dimensional subharmonic aided pressure estimation (SHAPE) for measuring intraplaque pressure and the pressure gradient across the plaque cap as novel biomarkers for potentially predicting plaque vulnerability. METHODS: Twenty-seven rabbits received a high-cholesterol diet for 2 weeks before a balloon catheter injury to denude the endothelium of the aorta, followed by 8 to 10 weeks of the high-cholesterol diet to create arteriosclerotic plaques. SHAPE imagings of the resulting plaques were performed 12, 16, and 20 weeks after injury using a LOGIQ 9 scanner with a 4D10L probe (GE Healthcare, Milwaukee, WI) before and during an infusion of Definity (Lantheus Medical Imaging, North Billerica, MA) and Sonazoid (GE Healthcare, Oslo, Norway). The ratios of the maximum subharmonic magnitudes at baseline and during the infusion were correlated with the intraplaque pressure and pressure gradient across the plaque cap obtained from direct measurements. RESULTS: Ten rabbits died prematurely after the balloon injury procedure or due to toxicity from the high-cholesterol diet, whereas 2 rabbits were excluded for other conditions. Five rabbits were scanned in the 12-, 16-, and 20-week groups, respectively. Even after 20 weeks, the plaques that developed were very small (mean ± SD, 0.9 ± 0.4 × 0.14 ± 0.05 cm). Definity performed better than Sonazoid in this application but still only achieved a moderate correlation with pressure across the plaque cap (Definity, r = -0.40; Sonazoid, r = 0.22) and intraplaque pressure (Definity, r = -0.19; Sonazoid, r = -0.11). CONCLUSIONS: Initial findings from plaque pressure estimation using 3-dimensional SHAPE technique showed only moderate correlations with reference standards, but that may be have been due to weaknesses in the animal model studied.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    4
    Citations
    NaN
    KQI
    []