Taylor-Couette Instabilities in Flows of Newtonian and Power-Law Liquids in the Presence of Partial Annulus Obstruction

2006 
The flow inside a horizontal annulus due to the inner cylinder rotation is studied. The bottom of the annular space is partially blocked by a plate parallel to the axis of rotation, thereby destroying the circumferential symmetry of the annular space geometry. This flow configuration is encountered in the drilling process of horizontal petroleum wells, where a bed of cuttings is deposited at the bottom part of the annulus. The velocity field for this flow was obtained both numerically and experimentally. In the numerical work, the equations which govern the three-dimensional, laminar flow of both Newtonian and power-law liquids were solved via a finite-volume technique. In the experimental research, the instantaneous and time-averaged flow fields over two-dimensional meridional sections of the annular space were measured employing the particle image velocimetry (PIV) technique, also both for Newtonian and power-law liquids. Attention was focused on the determination of the onset of secondary flow in the form of distorted Taylor vortices
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    6
    Citations
    NaN
    KQI
    []