Micro-cutting with diamond tool micro-patterned by femtosecond laser

2014 
The demand for micro-scale surface machining has been steadily increasing, and various methods have been introduced. Among these, microcutting with a diamond tool removes material by making multiple cutting passes. However, many passes are needed to generate micropatterns over a large area. To overcome the drawbacks of this time-consuming process, we propose a novel method, which uses a micropatterned diamond tool. A 220-fs-pulsed Ti: Sapphire laser is used to create micropatterns on the edge line of a rectangular diamond tool. A six-axis motion stage is used to align the edge line and flank surface of the diamond tool with respect to the focal point of the laser beam. Using a simple laser direct-writing method and a 100× objective lens (NA: 0.8), lines ≤ 2 μm in width, 20 μm in length, and 10 μm in separation were fabricated along the 1-mm edge line of a bulk diamond tool. The micropatterned diamond cutting tool was then used to successfully produce micropatterns on the surface of nickel (Ni)-electroformed on SKD-61. This novel process provides an efficient means of multiple micropattern generation for molding applications, such as those required for optics and biotechnology, using only a single pass of a diamond cutting tool.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    15
    Citations
    NaN
    KQI
    []