Effect of Antibiotics on Group A Streptococcus Exoprotein Production Analyzed by Two-Dimensional Gel Electrophoresis

2005 
High-dose clindamycin (CLDM) and benzylpenicillin (PCG) are the recommended chemotherapeutic remedies for toxic shock-like syndrome caused by group A streptococci. One reason for this is that it has been shown that CLDM suppresses the expression of some exoproteins, e.g., SpeB, SpeA, and streptolysin O (Slo). We analyzed the effects of antibiotics on the production of whole exoproteins by two-dimensional gel electrophoresis. Unexpectedly, we found that the levels of several exoproteins, Slo, NAD + -glycohydrolase (Nga), M protein, and Sic, were increased by CLDM treatment, although we also confirmed previous findings that the levels of various exoproteins, including SpeB, were decreased. The increases in exoprotein levels were also detected by using other protein synthesis inhibitor antibiotics: erythromycin, kanamycin, tetracycline, chloramphenicol, and linezolid. Peptidoglycan synthesis inhibitors (such as PCG, cefazolin, and imipenem), DNA replication inhibitors (such as gatifloxacin), and an RNA polymerase inhibitor (rifampin) did not have significant effects on exoprotein production. The combination of CLDM and PCG had no advantageous effects with regard to exoprotein production compared to the effect achieved with CLDM alone. We also analyzed the transcriptional levels of slo and nga by reverse transcription-PCR and found that this change was also detected at the transcriptional level. Furthermore, the phenomenon was seen not only in strains of the M1 serotype but also in strains of the other M serotypes. Our study suggests that the clinical effectiveness of CLDM might be due to the inhibition of the production of a limited number of exoproteins.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    48
    Citations
    NaN
    KQI
    []