Rapid digital quantification of microfracture populations

2006 
Abstract Populations of microfractures are a structural fabric in many rocks deformed at upper crustal conditions. In some cases these fractures are visible in transmitted-light microscopy as fluid-inclusion planes or cement filled microfractures, but because SEM-based cathodoluminescence (CL) reveals more fractures and delineates their shapes, sizes, and crosscutting relations, it is a more effective structural tool. Yet at magnifications of 150–300×, at which many microfractures are visible, SEM-CL detectors image only small sample areas (0.5–0.1 mm 2 ) relative to fracture population patterns. The substantial effort required to image and measure centimeter-size areas at high-magnification has impeded quantitative study of microfractures. We present a method for efficient collection of mosaics of high-resolution CL imagery, a preparation method that allows samples to be any size while retaining continuous imagery of rock (no gaps), and software that facilitates fracture mapping and data reduction. Although the method introduced here was developed for CL imagery, it can be used with any other kind of images, including mosaics from petrographic microscopes. Compared with manual measurements, the new method increases several fold the number of microfractures imaged without a proportional increase in level of effort, increases the accuracy and repeatability of fracture measurements, and speeds quantification and display of fracture population attributes. We illustrate the method on microfracture arrays in dolostone from NE Mexico and sandstone from NW Scotland. We show that key aspects of microfracture population attributes are only fully manifest at scales larger than a single thin section.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    35
    Citations
    NaN
    KQI
    []