Production and characterization of Green Iron Oxide nanoparticles with antifungal properties against fungal pathogens
2020
In this study, iron oxide nanoparticles were synthesized throughthe green chemistry method. It involved the use of plant extract for synthesis of metal oxide nanomaterials. Aqueous extract of Tridaxprocumbenswas employed for the production of iron oxide nanoparticles. T. procumbens is a weed and it has good medicinal properties.The green chemistry approach provides a simple, cost-effective and eco-innovative method to the synthesis of nanomaterials as compared to the other alternative methods. Phase, crystal, surface chemistry, size, shape and element composition of nanoparticles were assessed and determined by various techniques like Fourier transform infrared spectroscopy (FTIR),X-Ray diffraction (XRD),Scanning Electron Microscopy (SEM) and Energy dispersion X-Ray (EDX). In addition, the antifungal properties of the biosynthesized nanoparticles were investigated against plant fungal pathogens. Spherical-shaped nanoparticles with a size of 26 ± 5 nm were obtained using the extract of T. procumbens. Bio-molecules from T. procumbens served as reducing, cappingand stabilizing agents for the fabrication of nanoparticles. The highest zone of inhibition was obtained in S. rolfsii(16.5 ± 0.5)at 50 µg/ml of concentration of TFeONPs. Biosynthesized TFeONPs were capable of inhibiting the growth of fungal pathogens such as S. rolfsii and F. oxysporumand they might beemployed as antifungal agents in agriculture to control fungal infections.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
3
Citations
NaN
KQI