Enhanced Magnetocaloric Effect Driven by Interfacial Magnetic Coupling in Self-Assembled Mn3O4–La0.7Sr0.3MnO3 Nanocomposites

2015 
Magnetic refrigeration, resulting from the magnetocaloric effect of a material around the magnetic phase-transition temperature, is a topic of great interest as it is considered to be an alternate energy solution to conventional vapor-compression refrigeration. The viability of a magnetic refrigeration system for magnetic cooling can be tested by exploiting materials in various forms, from bulk to nanostrucutres. In this study, magnetocaloric properties of self-assembled Mn3O4–La0.7Sr0.3MnO3 nanocomposites, with varying doping concentrations of Mn3O4 in the form of nanocrystals embedded in the La0.7Sr0.3MnO3 matrix, are investigated. The temperatures corresponding to the paramagnetic-to-ferromagnetic transitions are higher, and the values of change in magnetic entropy under a magnetic field of 2 T show an enhancement (highest being ∼130%) for the nanocomposites with low doping concentrations of Mn3O4, compared to that of pure La0.7Sr0.3MnO3 thin films. Relative cooling power remain close to those of La0.7...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    8
    Citations
    NaN
    KQI
    []