Microstructure and mechanical properties of high-nitrogen 16Cr-2Ni-Mn-Mo-xN stainless steel obtained by powder metallurgy techniques

2020 
Abstract 16Cr-2Ni-Mn-Mo-xN (wt%) stainless steel powders were synthesized by mechanical alloying from elemental metal and chromium nitride (Cr2N) powders. Compaction of resulting powders was carried out using spark plasma sintering technology. The X-Ray diffraction and Scanning Electron Microscopy analysis showed that chemical homogeneity improves with increasing alloying time and decreasing nitrides powder content. Analysis of sintering samples showed the formation of α and γ-phase solid solution with nitrogen-containing samples containing undissolved nitrogen inclusions. The results of high-temperature tensile tests showed an increase of tensile stress for the sample containing 50% Cr2N. Furthermore, the microhardness was increased with an increase in the amount of Cr2N.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    1
    Citations
    NaN
    KQI
    []