Cross-tail ion drift in a realistic model magnetotail

1984 
Integrating the exact equations of motion, we have followed particle orbits in a good model magnetospheric field consisting of a planetary dipole, forward magnetosphere, and magnetotail current system. Proton energies from 2 eV to 20 keV were used for the full range of equatorial pitch angles and phase. Despite considerable pitch angle scattering in the equatorial plane crossings, we find, first, that the bounce-averaged cross-tail drift velocity is approximately independent of pitch angle. Second, we find that, averaged over initial gyrophase, the drift velocity (due to field curvature and gradient) is proportional to proton energy and is given to good approximation by adiabatic approximations, even up to 20 keV, despite the extreme lack of meeting the adiabatic criteria.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    22
    Citations
    NaN
    KQI
    []