Adaptive delay lines for absolute distancemeasurements in high-speed long-rangeFrequency Scanning Interferometry

2020 
The application of frequency scanning interferometry to long-range (∼10 m) high-speed (upwards of 105 coordinates s−1) absolute distance measurement is currently impractical at reasonable cost due to the extremely high modulation frequencies (typically 100 GHz or more). A solution is proposed here based on an adaptive delay line architecture, in which the reference beam passes through a series of N switchable delay lines, with exponentially-growing delays. The benefits include a reduction by a factor of 2N in the required signal sampling rate, in the size of dataset to be processed, and in minimum allowable source coherence length, thus paving the way for the use of fast sweeping sources such as vertical-cavity surface-emitting lasers (VCSELs) and Fourier-domain mode-locked (FDML) lasers for long-range lidars. The validity of the principle has been demonstrated experimentally by means of a three-switch prototype.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []