Improvement of clinical fracture healing-what can be learned from mechano-biological research?

2020 
Abstract The most significant predictors of reoperation following operative management of fractures are the presence of a third degree open fracture, remaining fracture gaps and a transverse fracture. However clinical studies provide no information regarding the involvement of various soft tissues or how the mechanical environment affects revascularisation and bone healing. Here the results of experimental and numerical mechano-biological studies on fracture healing are summarized to provide guidance toward clinical treatment of fractures. In experimental studies, isolated muscle crush appeared to only temporarily impair fracture healing, with no significant effect to the final bone healing, whereas a more severe muscle trauma significantly reduced callus formation and biomechanical properties of the healed bones. An intraoperative trauma can furthermore impede vascularization. Surgical removal of the haematoma or periosteum disturbs fracture healing. While reaming for intramedullary nailing reduced blood flow in the bone during the early phase of bone healing, it did not affect the stiffness or strength of the final bone healing. The optimal conditions for rapid vascularization and bone healing result from fracture fixation that minimizes shearing movements in the healing zone while allowing moderate compressive movements. Bone healing is increasingly delayed with increasing fracture gap size and critical-size defects do not heal sufficiently independent of the mechanical environment. The stiffness of fracture fixation systems like nails and external fixators applied in clinical treatments frequently display a too low stiffness, whereas plate systems often cause a too stiff fixation that suppresses bone healing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    90
    References
    5
    Citations
    NaN
    KQI
    []