An embedded shock-fitting technique on unstructured dynamic grids

2021 
Abstract In this paper, a new shock-fitting technique based on unstructured dynamic grids is proposed to improve the performances of the unstructured “boundary” shock-fitting technique developed by Liu and co-workers in [1, 2]. The main feature of this new technique, which we call the “embedded” shock-fitting technique, is its capability to insert or remove shocks or parts thereof during the calculation. This capability is enabled by defining subsets of grid-points (mutually connected by lines) which behave as either “common”- or “shock”-points, shock-waves being made of an ordered collection of shock-points. Two different sets of flow variables, corresponding to the upstream and downstream sides of the shocks, are assigned to the shock-points, which may be switched to common- and back to shock-points, a feature that allows to vary the length of the existing shocks and/or make new shock-branches appear. This paper illustrates the algorithmic features of this new technique and presents the results obtained when simulating both steady and un-steady, two-dimensional flows.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    3
    Citations
    NaN
    KQI
    []