Ion Separation in Air Using a Three-Dimensional Printed Ion Mobility Spectrometer

2017 
The performance of a small, plastic drift tube ion mobility spectrometer (DT-IMS) is described. The IMS was manufactured using three-dimensional (3D) printing techniques and operates in the open air at ambient pressure, temperature, and humidity. The IMS housing and electrodes were printed from nonconductive polylactic acid (PLA, housing) and conductive polyethylene terephthalate glycol-modified polymer containing multiwalled carbon nanotubes (PETG-CNT, electrodes). Ring electrodes consisting of both an inner disk and an outer ring were used to prevent neutral transmission while maximizing ion transmission. As a stand-alone instrument, the 3D printed IMS is shown to achieve resolving powers of between 24 and 50 in positive ion mode using tetraalkylammonium bromide salts (TAA), benzylamines (mono-, di-, and tri-), and illicit drugs (MA, MDEA, and haloperidol). Resolving powers of between 29 and 42 were achieved in negative ion mode using sodium alkyl sulfates (C8, C12, C16, and C18). Reduced ion mobilities...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    17
    Citations
    NaN
    KQI
    []