Exchange splitting of the interaction energy and the multipole expansion of the wave function

2015 
The exchange splitting J of the interaction energy of the hydrogen atom with a proton is calculated using the conventional surface-integral formula Jsurf[Φ], the volume-integral formula of the symmetry-adapted perturbation theory JSAPT[Φ], and a variational volume-integral formula Jvar[Φ]. The calculations are based on the multipole expansion of the wave function Φ, which is divergent for any internuclear distance R. Nevertheless, the resulting approximations to the leading coefficient j0 in the large-R asymptotic series J(R) = 2e−R−1R(j0 + j1R−1 + j2R−2 + ⋯) converge with the rate corresponding to the convergence radii equal to 4, 2, and 1 when the Jvar[Φ], Jsurf[Φ], and JSAPT[Φ] formulas are used, respectively. Additionally, we observe that also the higher jk coefficients are predicted correctly when the multipole expansion is used in the Jvar[Φ] and Jsurf[Φ] formulas. The symmetry adapted perturbation theory formula JSAPT[Φ] predicts correctly only the first two coefficients, j0 and j1, gives a wrong v...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    6
    Citations
    NaN
    KQI
    []