Waste tire derived carbon as potential anode for lithium-ion batteries.

2022 
Abstract The uncontrolled accumulation of end-of-life tires every year leads to serious environmental concerns, rendering setback to the sustainable growth of the society. The most viable solution to overcome this environmental issue is to convert these hazardness waste tires into value added products. In the present investigation, carbonecous based anode materials has been developed by a novel chemical activation strategy involving aqua regia followed by controlled pyrolytic condition in the selective atmospheres. Raman spectroscopic study displayed a graphitic carbon with significant degree of disordered arrangements. The generation of the turbostratic carbon with higher content of broken crystal edges is corroborated using the structural characterization such as X-ray diffraction (XRD). This fact is further corroborated from surface energy results calculated using the contact angles measured by dynamic wicking method. The prepared turbostratic carbon, when used as lithium anode, renders excellent electrochemical performances with reversible specific capacity of 350 mAhg−1 (at 300 mAg−1) with 81% capacity retention after 500 cycles. The present research provides new roadmap in recycling the waste tires for energy storage applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []