Retrofitting reinforced concrete structures with FRP: Numerical simulations using multifiber beam elements

2009 
In structural engineering, seismic vulnerability reduction of existing structures is a crucial issue. External reinforcement by Polymer Reinforced Fibers (FRP) is an interesting tool in order to fulfill this aim. However, the use of FRP reinforcement as a retrofitting method is limited, one of the reasons being the lack of predicting numerical tools for cyclic loading. This paper presents a method to predict the behavior of beam-column structures considering the FRP reinforcement effect. It describes the construction of a 1D concrete constitutive model suitable for monotonic and cycling loadings. The model is inspired on two well-known concrete models, the first one based on the damage mechanics theory (La Borderie concrete damage model), and the second one based on experimental studies (Eid & Paultre's confined concrete model). Validation of the approach is done using experimental results on reinforced concrete beam and columns submitted to axial and flexural cyclic loading. The proposed method deals also with steel bar rupture considering low cycle fatigue effects. All the simulations are done using multifiber Timoshenko beam elements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []