Investigation of the differential rotation of the large-scale magnetic elements for the solar activity cycles 20 and 21

2007 
Abstract The differential rotation of the patterns of the large-scale solar magnetic field during solar activity cycles 20 and 21 is investigated. Compact magnetic elements with the polarity of the general solar magnetic field have larger speed of rotation than the elements with the opposite polarity. The surface of the Sun was divided by 10°-zones. In all of them the average rotation rate of the magnetic elements with negative polarity is little higher than that of the magnetic elements with positive polarity, except for 50°-zone of the south hemisphere and at the 10° latitude of the north hemisphere. The rates of differential rotation for large-scale magnetic elements with negative and positive polarities have similar behavior for both cycles of the solar activity. The rotation rate varies at polarity reversal of the circumpolar magnetic fields. For the cycle No 20 in 1969–1970 the threefold reversal took place in the northern hemisphere and variations of rotation rate can be noticed for magnetic elements both with positive and negative polarity for each 10°-zone in the same hemisphere.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    12
    Citations
    NaN
    KQI
    []