Simulation and experiment on surface topography of complex surface in single point diamond turning based on determined tool path

2021 
Surface topography is an important element that reflects the machining quality of workpieces and the functional performance of components. To avoid expensive cutting experiments, forecasting the surface topography before actual machining is necessary. Surface topography of diamond turned surfaces is directly affected by generated tool path in ultraprecision single point diamond turning (SPDT). In this study, a novel surface topography modeling method was presented. The planned tool path based on active machining precision control was considered in this method. Simulation and experiment of an umbrella surface diamond turning were conducted to testify the usability of the proposed model. Through comparing the simulation and experimental data of surface topography and machining error, the results showed that the proposed model can be applied to forecast the surface topography and machining error in SPDT using the generated tool path.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []