Formulation and performance evaluation of polymeric mixed micelles encapsulated with baicalein for breast cancer treatment.

2021 
The present study is aimed to formulate baicalein loaded mixed micelles to enhance the solubility and oral bioavailability. Baicalein encapsulated D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and pluronic F127 (F127) combined micelles were prepared and investigated for anticancer effect. The optimized formulation contains 25.04 ± 0.24 nm mean particle size micelles with zeta potential value of -4.01 ± 0.5 mV. The calculated entrapment efficiency percentage of baicalein within the micellar structure was 83.43 ± 0.13% and the in vitro release of baicalein from micelles displayed a sustained release profile at pH 7.4. The incorporation of baicalein within micelles core was also confirmed by FTIR analysis of formulation, which hardly represents the characteristic peak of baicalein, indicates successful entrapment of the drug. In vitro cell culture experiments revealed baicalein loaded micelles significantly enhanced cellular uptake and cytotoxicity against MDA-MB231 cell lines in comparison to free baicalein. Additionally, as compared to free baicalein, baicalein micelles demonstrated greater apoptosis-inducing potential while the results of the cell cycle study exhibited arrest of cells at the G0/G1 phase of the cell cycle. Results of ROS (reactive oxygen species) and MMP (mitochondrial membrane potential) assay revealed the ROS dependent mitochondrial-mediated apoptosis pathway utilized by developed formulation to inhibit cell proliferation. Thus, the developed nano micelles can serve as a potent carrier system for baicalein against breast cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    0
    Citations
    NaN
    KQI
    []