Occurrence of typical antibiotics, representative antibiotic-resistant bacteria, and genes in fresh and stored source-separated human urine

2021 
Abstract Human urine is a source of fertilizer and, with proper management, it can be reused in agriculture. Determining the contamination issue of antibiotics in source-separated urine is important because the majority of antibiotics are excreted with urine. In this study, source-separated urine samples were randomly collected from a male toilet in a university building and analyzed in terms of 30 typical antibiotics (including 14 sulfonamides, 4 tetracyclines, and 12 fluoroquinolones) and tetracycline-resistant Escherichia coli, as well as its antibiotic-resistant genes to determine the contamination characteristics of antibiotic-related pollution in fresh and stored urine. Results showed that 18 out of 30 typical antibiotics were detected in fresh source-separated human urine. The dominant antibiotic was oxytetracycline with a frequency of 100%, followed by tetracycline, sparfloxacin, enrofloxacin, and ofloxacin, which demonstrated a detection frequency of 55%. Among the detected values, sulfonamides (2 antibiotics), tetracyclines (4 antibiotics), and fluoroquinolones (12 antibiotics) had a concentration range of 0.25–2.94, 0.94–41.2, and 0.06–163.16 ng/mL, respectively. Furthermore, tetracycline-resistant Escherichia coli, which was measured using plate count method, and its related gene, tet M, exhibited a maximum cell density of (200,000 ± 5000) CFU/100 mL and (2.73 ± 0.261) × 107 copies/mL, respectively. When the fresh urine was stored in an ambient environment for 30 days to simulate the real circumstances of urine management, a significant reduction in antibiotics and antibiotic-resistant bacteria was observed, while the change in antibiotic-resistant genes was insignificant. The results of this study suggest that risks associated with antibiotics and their antibiotic-resistant bacteria and genes are retained during collection and storage. Hence, these kinds of microcontaminants must be considered in further urine utilization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    10
    Citations
    NaN
    KQI
    []