AgNP/Alginate Nanocomposite hydrogel for antimicrobial and antibiofilm applications

2020 
Abstract The synthesis and specific surface functionalization of antimicrobial silver nanoparticles (AgNPs) and their incorporation into an alginate hydrogel is described. Divalent cation-mediated ionic crosslinking was used to disperse the AgNPs throughout the gel, made possible by –COO- cross-linking sites provided by the surface-enhanced nanoparticles, inspired by the classic egg-box model crosslinking of calcium alginate. An AgNP concentration, 10-20 μg g-1 increased hygrogel elasticity, viscosity, and shear resistance by 45, 30, and 31% respectively. Cryo-TEM revealed evenly distributed AgNP assemblies of discrete AgNPs throughout the gel matrices. FTIR-ATR indicated AgNPs were involved in alginate carboxylate-Ca2+-COO-AgNP crossbridging, which was not achieved through mixing of AgNPs into preformed gels. Live/dead fluorometric assays determined a minimal bactericidal concentration of 25 μg g-1 Ag for 6 microorganisms. Anti-biofilm assays showed species-dependent cell death of 44 -61%, with limited silver ion release of 0.41% and 1.1% after 7 days for Gram positive and negative bacteria, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    17
    Citations
    NaN
    KQI
    []