데이터베이스 : 고차원 데이터의 효율적인 최근접 객체 검색 기법
2004
피라미드 기법은 n-차원 공간 데이터를 1차원 데이터로 변환하여 B+-트리로 표현하며, n-차원 데이터 공간에서 하이퍼큐브 영역질의 처리로 발생하는 ´차원의 저주현상´에 영향을 받지 않게 검색 시간 문제를 해결하고 있다. 또 구형 피라미드 기법(SPY-TEC)은 피라미드 기법의 공간 분할 전략을 응용하여 유사도 검색에 적합한 구 영역질의 방법을 사용하고 검색 성능을 개선하고 있다. 하지만 유사도 검색의 응용에서 영역질의는 범위를 지정하는데 어려움이 있어 최근접 질의가 더 효율적이며, 기존의 제안된 인덱스 기법들은 특정 분포의 데이터에 대해서만 우수한 성능을 보이는 단점이 있다. 따라서 이 논문에서는 멀티미디어 데이터와 같은 고차원 데이터의 검색 성능을 향상시키기 위해 제안되었던PdR-트리를 이용하여 최근접 객체 검색 기법을 제안한다. 다양한 분포의 모의 데이터와 실제 데이터를 이용하여 실험한 결과, PdR-트리가 피라미드 기법과 구형 피라미드 기법보다 검색 성능이 향상되었음을 보이고 있다.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI