CD11c+ resident macrophages drive hepatocyte death-triggered liver fibrosis in a murine model of nonalcoholic steatohepatitis

2017 
: Although recent evidence has pointed to the role of organ- and pathogenesis-specific macrophage subsets, it is still unclear which subsets are critically involved in the pathogenesis of nonalcoholic steatohepatitis (NASH). Using melanocortin-4 receptor-deficient (MC4R-KO) mice fed Western diet (WD), which exhibit liver phenotypes similar to those of human NASH, we found a histological structure, termed hepatic crown-like structure (hCLS), in which CD11c+ macrophages surround dead/dying hepatocytes, a prominent feature of NASH. Here, we demonstrate that hCLS-constituting macrophages could be a novel macrophage subset that drives hepatocyte death-triggered liver fibrosis. In an "inducible NASH model," hepatocyte death induces hCLS formation and liver fibrosis sequentially in the short term. In combination with the long-term WD feeding model, we also showed that resident macrophages are a major cellular source of CD11c+ macrophages constituting hCLS, which exhibited gene expression profiles distinct from CD11c- macrophages scattered in the liver. Moreover, depletion of CD11c+ macrophages abolished hCLS formation and fibrogenesis in NASH. Our clinical data suggest the role of CD11c+ macrophages in the disease progression from simple steatosis to NASH. This study sheds light on the role of resident macrophages, in addition to recruited macrophages, in the pathogenesis of NASH.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    38
    Citations
    NaN
    KQI
    []