Deep clustering with concrete k-means.

2020 
We address the problem of simultaneously learning a k-means clustering and deep feature representation from unlabelled data, which is of interest due to the potential for deep k-means to outperform traditional two-step feature extraction and shallow clustering strategies. We achieve this by developing a gradient estimator for the non-differentiable k-means objective via the Gumbel-Softmax reparameterisation trick. In contrast to previous attempts at deep clustering, our concrete k-means model can be optimised with respect to the canonical k-means objective and is easily trained end-to-end without resorting to time consuming alternating optimisation techniques. We demonstrate the efficacy of our method on standard clustering benchmarks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    7
    Citations
    NaN
    KQI
    []