Dynamic electrocatalyst with current-driven oxyhydroxide shell for rechargeable zinc-air battery.

2020 
Recent fruitful studies on rechargeable zinc-air battery have led to emergence of various bifunctional oxygen electrocatalysts, especially metal-based materials. However, their electrocatalytic configuration and evolution pathway during battery operation are rarely spotlighted. Herein, to depict the underlying behaviors, a concept named dynamic electrocatalyst is proposed. By selecting a bimetal nitride as representation, a current-driven “shell-bulk” configuration is visualized via time-resolved X-ray and electron spectroscopy analyses. A dynamic picture sketching the generation and maturation of nanoscale oxyhydroxide shell is presented, and periodic valence swings of performance-dominant element are observed. Upon maturation, zinc-air battery experiences a near two-fold enlargement in power density to 234 mW cm−2, a gradual narrowing of voltage gap to 0.85 V at 30 mA cm−2, followed by stable cycling for hundreds of hours. The revealed configuration can serve as the basis to construct future blueprints for metal-based electrocatalysts, and push zinc-air battery toward practical application. Interest in rechargeable Zn-air batteries has been renewed in recent years, however, their oxygen electrocatalysts remain not fully understood. Here the authors reveal the presence of a current-driven oxyhydroxide shell in a so-called dynamic eletrocatalyst that enables optimized battery performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    67
    Citations
    NaN
    KQI
    []