A Solvent-Free Coarse Grain Model for Crystalline and Amorphous Cellulose Fibrils

2011 
Understanding biomass structure and dynamics on a range of time and length scales is important for the development of cellulosic biofuels. Here, to enable length and time scale extension, we develop a coarse grain (CG) model for molecular dynamics (MD) simulations of cellulose. For this purpose, we use distribution functions from fully atomistic MD simulations as target observables. A single bead per monomer level coarse graining is found to be sufficient to successfully reproduce structural features of crystalline cellulose. Without the use of constraints the CG crystalline fibril is found to remain stable over the maximum simulation length explored in this study (>1 μs). We also extend the CG representation to model fully amorphous cellulose fibrils. This is done by using an atomistic MD simulation of fully solvated individual cellulose chains as a target for developing the corresponding fully amorphous CG force field. Fibril structures with different degrees of crystallinity are obtained using force fi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    46
    Citations
    NaN
    KQI
    []