Mechanisms of lactic acid gustatory attraction in Drosophila.

2021 
Sour has been studied almost exclusively as an aversive taste modality. Yet recent work in Drosophila demonstrates that specific carboxylic acids are attractive at ecologically relevant concentrations. Here, we demonstrate that lactic acid is an appetitive and energetic tastant, which stimulates feeding through activation of sweet gustatory receptor neurons (GRNs). This activation displays distinct, mechanistically separable stimulus onset and removal phases. Ionotropic receptor 25a (IR25a) primarily mediates the onset response, which shows specificity for the lactate anion and drives feeding initiation through proboscis extension. Conversely, sweet gustatory receptors (Gr64a-f) mediate a non-specific removal response to low pH that primarily impacts ingestion. While mutations in either receptor family have marginal impacts on feeding, lactic acid attraction is completely abolished in combined mutants. Thus, specific components of lactic acid are detected through two classes of receptors to activate a single set of sensory neurons in physiologically distinct ways, ultimately leading to robust behavioral attraction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    2
    Citations
    NaN
    KQI
    []